DGIST 박상현 교수 연구팀 의료영상에 특화된 도메인 적응 인공지능 개발다기관 의료영상 분석 위한 딥러닝 모델 개발 비용 절감 및 시간 단축에 기여
-
DGIST(총장 국양) 로봇및기계전자공학과 박상현 교수팀이 의료영상에 특화된 도메인 적응 인공지능 모델 기술을 개발했다고 19일 밝혔다.이번 기술은 의료영상이 서로 다른 스캐너나 다른 환경에서 취득되더라도 성능이 저하되지 않고 정확한 분석이 가능한 기술로, 영상의 특성이 바뀔 때마다 새롭게 학습데이터를 구축하고 레이블을 제작했던 기존의 방식보다 시간과 비용이 절감되어 의료 분야에 상당한 기여를 할 것으로 기대된다.의료 인공지능의 경우 학습에 사용된 이미지 양식과 다른 이미지가 모델에 입력되면 성능이 크게 하락하는 일이 빈번하게 일어난다. 예를 들면 A사의 스캐너로 취득된 MRI 데이터로 학습된 모델에 B사 스캐너로 취득한 MRI 데이터가 입력되면 성능이 하락할 수 있다.CT와 MRI 등 다중 모달리티 영상을 취득하기 어려운 경우에도 CT 영상으로부터 MRI로 변환한 데이터셋을 생성해 더 정확한 분석을 할 수 있다. 최근 이미지의 스타일을 변화시켜주는 연구들이 제안되고 있지만 대부분 일반영상의 스타일 변환에 집중하고 있어 이미지 변환 시 종종 구조변형이 나타난다.하지만 정확한 진단을 위해 활용하는 의료영상에서는 장기나 혈관, 병변 등의 구조적인 변형이 일어나서는 안 된다.이에 의료영상의 정확한 분석을 위해서는 성능저하 방지 및 구조적 변형 최소화를 위한 기술 개발이 필요하다. 이에 박상현 교수팀은 이미지 변환 작업을 진행할 때 ‘상호 정보 오류함수’를 활용하여 이미지 구조변형을 최소화할 수 있는 기술을 개발했다.연구팀이 개발한 기술은 의료영상 이미지의 구조 정보와 새로운 도메인의 이미지에서 질감 정보를 추출하고, ‘판별자 오류함수’를 활용하여 사실적인 이미지를 생성한다.연구팀은 해당 기술을 활용해 여러 기관에서 수집한 안저 영상 및 전립선 MRI, 심장 CT와 MRI 영역화를 위해 서로 다른 모달리티 이미지를 각각 반대로 생성하게 해 도메인 적응을 수행했다.그 결과 해당 기술을 통해 구조를 유지하면서 모달리티가 다른 이미지를 잘 생성할 수 있음을 확인했고, 기존의 도메인 적응 및 이미지 변환 기법과 비교했을 때보다 우수한 성능을 나타낸다는 것을 확인했다.DGIST 로봇및기계전자공학과 박상현 교수는 “이번 연구를 통해 의료 분야에서 도메인이 바뀔 때마다 새롭게 인공지능 모델을 학습하는 데 드는 시간과 비용을 획기적으로 줄일 수 있는 기술을 개발했다”며 “해당 기술이 여러 의료현장에서 범용적으로 활용가능한 진단소프트웨어 개발에 크게 기여할 것으로 기대한다”고 말했다.한편, 이번 연구는 산업통상자원부의 현장수요의료기기고도화기술개발 사업과 한국연구재단의 신진연구자지원 사업의 지원을 받아 수행했으며, 결과는 그 우수성을 인정받아 영상분석 관련 분야 최상위 저널인 ‘Pattern Recognition’에 게재됐다.