체외환경에서 무선제어방식으로 세포 손상을 최소화해 신경망 연결하는 마이크로로봇 개발 중증 뇌질환인 치매, 뇌전증 등 신경계 질환 연구에 큰 역할 기대
  • ▲ DGIST 로봇공학전공 최홍수 교수(오른쪽), 제1저자 김은희 박사과정생(가운데), DGIST-ETH 마이크로로봇 연구센터 김진영 선임연구원(왼쪽).ⓒDGIST
    ▲ DGIST 로봇공학전공 최홍수 교수(오른쪽), 제1저자 김은희 박사과정생(가운데), DGIST-ETH 마이크로로봇 연구센터 김진영 선임연구원(왼쪽).ⓒDGIST

    DGIST(총장 국양)는 로봇공학전공 최홍수 교수 연구팀이 체외 환경에서 원하는 위치에 정밀하게 신경세포를 전달해 신경망을 연결하는 신경세포 전달용 마이크로로봇 개발에 성공했다.

    4일 DGIST에 따르면 이번 연구 성과는 향후 중증 뇌질환인 치매나 뇌전증 등 다양한 신경계 질환 연구에 큰 역할을 할 것으로 기대된다고 밝혔다.

    인체 조직의 치료를 위해 약물 치료, 수술 등이 가능한 마이크로로봇 기술 연구가 각광받고 있다. 마이크로로봇은 외부 자기장을 통한 무선제어로 세포나 약물을 낭비 없이 정교하게 전달 가능하다. DGIST 최홍수 교수 연구팀은 이러한 마이크로로봇의 장점을 활용해 신경세포 전달 및 신경망 연결이 가능한 플랫폼 개발에 성공했다.

    연구팀의 마이크로로봇은 3D 레이저 리소그라피 공정을 통해 300마이크로미터(1마이크로미터는 100만분의 1미터)의 길이로 제작됐고, 로봇몸체에 신경세포를 배양할 수 있도록 5마이크로미터 사이즈 패턴의 홈을 만들었다. 구조체는 자기장 구동 및 생체적합성을 위해 니켈과 산화 티타늄 박막의 금속 증착 공정을 거쳤다.

  • ▲ 다중 전극 어레이(MEA)를 이용한 전기 자극으로 마이크로로봇이 없는 세포 패턴과 마이크로로봇으로 연결된 세포 패턴에서 전기 생리학적 신호 전파를 기록한 결과.ⓒDGIST
    ▲ 다중 전극 어레이(MEA)를 이용한 전기 자극으로 마이크로로봇이 없는 세포 패턴과 마이크로로봇으로 연결된 세포 패턴에서 전기 생리학적 신호 전파를 기록한 결과.ⓒDGIST

    연구팀은 마이크로로봇의 신경망 연결 능력을 검증하기 위해 신경세포가 내는 전기신호 측정 시스템인 ‘다중 전극 어레이(Microelectrode array, MEA)’ 칩 위에 각각의 해마 신경세포들을 따로 분리시켜 배양했다.

    마이크로로봇 몸체에 해마 신경세포를 배양 후, 칩 위의 해마 신경세포들을 연결하기 위해 마이크로로봇을 이동시켰다. 신경세포를 실은 마이크로로봇은 빠르게 움직여 분리된 신경세포들 사이를 연결했고, 두 신경세포에서 오가는 전기신호를 확인했다.

    이를 통해 원하는 패턴으로 신경망의 연결이 가능함을 최초로 확인했으며, 다수의 신경세포를 연결해 생리학적 기능을 분석할 수 있음을 증명했다.

    DGIST 로봇공학전공 최홍수 교수는 “이번 연구성과는 마이크로로봇이 체외 신경세포를 원하는 방식으로 연결할 수 있어, 다양한 신경계 질환 연구를 위한 기능적인 생체신호 분석이 가능하다. 신경세포의 전기생리학적 분석을 기반으로 하는 다양한 응용 연구에 활용 가능할 것으로 기대한다”며 “후속 연구를 진행해 마이크로로봇을 다양한 의공학적 용도로 활용할 수 있도록 노력하겠다”고 소감을 밝혔다.

    한편 이번 연구는 최홍수 교수팀과 DGIST-ETH 마이크로로봇 연구센터 김진영 선임연구원 및 뇌·인지과학전공 유성운 교수팀이 한국뇌연구원(KBRI) 라종철 교수팀과 융복합공동연구로 진행됐다.

    연구 결과는 세계적 학술지 ‘사이언스 어드밴시스(Science Advances)’ 9월 25일자 온라인 게재됐으며, 과학기술정보통신부와 DGIST의 지원으로 수행됐다.